Central Valley Flood Protection Board Update

August 28, 2015

Presented by:

Michael Mierzwa, P.E.

Michael.Mierzwa@water.ca.gov

Lead Flood Management Planner

California Department of Water Resources

Today's Discussion

Where We've Been

- CVFPP Public Workshop Summary

Where We Are

- Hydrologic Variability/Climate Change Approach

Where We're Going

- Regional Flood Management Plan Integration

Where We've Been

CVFPP Public Workshop Summary

CVFPP Public Workshop Summary

Key comments

- Workshop summary now available: <u>www.water.ca.gov/cvfmp</u>
- Review past presentations:
 www.water.ca.gov/cvfmp/meetings

Where We Are

Hydrologic Variability / Climate Change Considerations for 2017 CVFPP Update

Hydrologic Variability Considerations

Hydrologic Variability Considerations: American River Example

2017 ROADMAP

Water Year

Importance of Sierra Nevada Range in CA Water Management

How Temperature Increases Influence Storm Runoff Volumes

CONCEPT GRAPHIC

Existing Rain / Snow Trends

Future Rain / Snow Trends

How Sea Level Rise Influences System Outflow

Estimates of Future Sea Level Rise in California

	Low	Mean	High
2030	4.3 cm	14.4 cm	29.7 cm
2050	12.3 cm	28.0 cm	60.8 cm
2062*	18.5 cm (0.61 ft.)	38.8 cm (1.27 ft.)	83.1 cm (2.73 ft.)
2100	42.4 cm	91.9 cm	166.4 cm

Climate Change Impacts

- Contributes to rise in extreme weather events
- Expected to generate more extreme floods, more seasonal rain, less snow and rising sea levels
- Increases stress on the system

Climate Change Approach for 2017 CVFPP

Multi-phased approach

Uses latest science and data

Integrates existing hydrologic and flood risk approaches

Consistent with State's climate change policies

Refinement Using a Multi-Phased Approach

Phase 1 – included in 2012 plan

- Phase 2a 2007 global climate models, 112 independent climate projections
- Phase 2b More robust analysis and integration;
 2013 global climate models, 200 independent climate projections

Increasing Temperatures

Increasing Precipitation Extremes

Consistency w/ State Climate Planning Efforts

Consistency w/ State Climate Planning Efforts

How Temperature Increases Influence Storm Runoff Volumes

CONCEPT GRAPHIC

Existing Rain / Snow Trends

Future Rain / Snow Trends

Rise & Fall of Rivers: Mississippi River Basin Concept

Satellite imagery of the confluence of the Missouri and Mississippi Rivers north of St. Louis, Missouri.

- ✓ Seasonal vs. Inter-annual Differences Flow & Physical Footprint
- ✓ Floodplains Near Rivers Can Actually Be Higher Elevation than Flood Terraces

Attaining a Resilient System

- Goal is a resilient flood management system that:
 - Functions effectively over a long period
 - Can recover from large flood events
 - Addresses hydrologic variability climate change

Where We're Going

Regional Flood Management Plan Integration

Regional Flood Management Plan Integration

- RFMPs contain strong baseline dataset needed to build diverse portfolios of management actions.
- Working with regions to refine management actions, build portfolios to accomplish CVFPP goals and intended outcomes
- Taking advantage of the regions' hard work
 - Will be reflected in 2017 CVFPP Update
 - Shaping how the State articulates value of collective investments and need for sustainable funding solutions

Central Valley Flood Protection Board Update

August 28, 2015

Presented by:

Michael Mierzwa, P.E.

Michael.Mierzwa@water.ca.gov

Lead Flood Management Planner

California Department of Water Resources

